Contents

3

Liquid Waste
Photo: Canisters being moved at the Defense Waste Processing Facility

9

Solid Waste
Photo: Transuranic waste shipment from SRS to the Waste Isolation Pilot Plant in New Mexico

11

Nuclear Materials
Photo: H Canyon at SRS

16

Soil and Water Remediation, and Facility D&D
Photo: Heavy Water Component Test Reactor deactivation and decommissioning

19

Site Support Functions
Photo: Opening ceremonies at the Biomass Cogeneration Facility at SRS
Work Scope Description

The U.S. Department of Energy (DOE) Environmental Management (EM) Cleanup Program is categorized by functional areas called Program Baseline Summaries (PBS) which describe the scope, schedule and cost of cleanup work to be performed.

PBS 14, Radioactive Liquid Tank Waste Stabilization and Disposition

This PBS includes the removal, treatment, storage, and disposal of radioactive liquid waste stored in tanks and, ultimately, tank closure. This includes the operation of the Defense Waste Processing Facility (DWPF), waste tank farms, the Actinide Removal Process (ARP), Modular Caustic Side Solvent Extraction Unit (MCU), the Saltstone Production Facility (SPF), the Saltstone Disposal Facility (SDF), and future waste facilities including the design, construction, and operation of the Salt Waste Processing Facility (SWPF), Small Column Ion Exchange (SCIX), Saltstone Disposal Units (SDUs) and future waste facilities including the design, construction and operation of the Salt Waste Processing Facility (SWPF), Saltstone Disposal Units and additional glass waste storage capacity. This PBS also covers the safe surveillance and maintenance of its program operational facilities through facility deactivation until the facilities are transferred to PBS 30 for decommissioning.

Glossary of Terms

Canisters produced

Canisters produced is the total number of canisters (2 feet in diameter by 10 feet tall stainless steel bottles) filled at DWPF. These canisters are the final waste form for safe storage and geologic disposal of the highly radioactive components in the SRS radioactive liquid waste tank farms. The higher radioactive components of the salt and sludge wastes is mixed with a sand-like substance called frit and melted together in DWPF to form a glass. This molten glass is poured from the melter into the canister, where it cools and solidifies. The canisters are typically filled with about 4,000 pounds of glass.

Curie

The amount of radioactivity in 1 gram of the isotope radium-226. One curie is 37 billion radioactive disintegrations per second.
Liquid Waste (continued)

Curies stabilized
Curies stabilized is the calculated value of curies of radioactive waste that have been immobilized within the glass structure of filled canisters. This value is based on analytical results from individual sludge batches.

Radioactive liquid waste
Radioactive waste generated from dissolving used reactor fuels to recover uranium, plutonium and other isotopes. It is usually found in the form of a liquid, a solid saltcake, a sludge, or a dry powdery calcine. The liquid waste storage tanks at SRS include strontium-90, cesium-137, plutonium-238, plutonium-239, plutonium-241 and various uranium isotopes.

Because of the intense radiation fields, all waste storage tanks are built underground and all process work is done remotely or with proper shielding to protect workers and the public from radiation.

Treatment of the radioactive liquid waste separates high activity components from the low activity components. Sludge is washed during the preparation of sludge for vitrification. The decant from sludge washing joins the salt waste. The salt waste is treated in the ARP/MCU process or, in the future, SWPF or SCIX to separate the low activity components into a low-level waste (LLW) stream for disposition in the SDF. The higher activity components are vitrified in DWPF. This treatment results in an approximately 10-to-one reduction in the amount of waste that must be vitrified.

Stabilization
Conversion of chemically active or readily dispersible matter into an inert or less harmful form.
Liquid Waste (continued)

Salt and sludge

Radioactive liquid waste stored in tanks can generally be characterized as being either salt or sludge.

Salt Waste containing soluble radioactive elements (generally cesium and trace amounts of other soluble elements) that can be dissolved in the waste liquid. The salt waste can be further characterized as being:

- **Supernate**: liquid containing dissolved radioactive salts in normal solution
- **Concentrated Supernate**: supernate that has had liquid removed by evaporation
- **Salt Cake**: waste that has crystallized out of solution

Sludge Waste containing insoluble radioactive elements (generally strontium, plutonium, and uranium as metal hydrides) that have settled to the bottom of waste tanks.

A single tank can contain sludge, supernate and salt cake, although an effort is made to segregate the sludge and salt by tank.

Salt solution processed

The volume of salt solution from Tank 50 that are treated at the SPF to produce grout by mixing the low-level waste (LLW) liquid stream with cementitious materials (cement, flyash and slag). The LLW liquid waste stream results from the separation of the bulk of the radionuclides from the non-radioactive salts in the waste. At present, the ARP/MCU accomplishes this separation. In the future, this separation will be accomplished in SWPF with Small Column Ion Exchange (SCIX) supplementing this separation.
Liquid Waste (continued)

Tank closure

Operational tank closure consists of those actions following waste removal that bring liquid radioactive waste tanks and associated facilities to a state of readiness for final closure of the Tank Farms complex. The process involves:

- Developing and obtaining approval of tank-specific regulatory documents
- Isolating the tank from all operating systems in the surrounding Tank Farm (e.g., electrical, instruments, steam, air, water, waste transfer lines and tank ventilation systems)
- Stabilizing by grouting of the primary tank, remaining equipment, annulus and cooling coils
- Capping all tank risers

DOE plans to close 24 Type I, II, and IV tanks that are planned for removal-from-service in accordance with a formal agreement between DOE, Region IV of the Environmental Protection Agency (EPA), and the South Carolina Department of Health and Environmental Control (SCDHEC) as expressed in the SRS currently-approved Federal Facility Agreement (FFA). These tanks must be operationally closed per the currently approved FFA schedule.

Tanks closed

The number of waste tanks that have been operationally closed in accordance with the NDAA §3116 tank closure process

Tanks, old style

(Tanks 1-24) single walled

- Types I (built 1951–1953)
- Types II (1955–1956)
- Types IV (1958–1962), Tanks 17 and 20 closed in 1997

Tanks, new style

(Tanks 25-51) double walled

- Types III (built 1967–1972)
- Types IIIA (1976–1981)
Liquid Waste (continued)

Vitrification

A process that stabilizes nuclear waste by mixing it with molten glass. The glass mixture is poured into cylindrical metal canisters, where it hardens.

Waste removal and tank cleaning

Waste removal and tank cleaning refer to:

- Transferring waste from the tanks for processing in sludge and salt preparation, referred to as Bulk Waste Removal Efforts (BWRE)
 - *Sludge is sent to a feed preparation tank, and then to final treatment at DWPF*
 - *Salt is dissolved, removed, and staged for treatment at ARP/MCU, SCIX, or SWPF*

- Removing the remaining material left after BWRE. The material left at the bottom of a tank after using normal transfer methods to empty a tank is referred to as the heel. Using various mechanical (e.g., water sprays, mechanical crawlers) and chemical techniques (e.g., oxalic acid washing) as much of any remaining material is removed from the floor, walls and components of the tank to the extent technically practicable from an engineering perspective. This is referred to as heel removal.

- If necessary, cleaning the tank annulus. The annulus in a waste tank is the space between the primary tank shell and the secondary containment. If material has leaked into the annulus from the main tank, annulus cleaning refers to the removal of this material.

The backlogged and currently generated HLW in SRS tanks must be removed by 2028 per the currently approved SRS Site Treatment Plan.
Liquid Waste (continued)

![Liquid Waste Diagram]

<table>
<thead>
<tr>
<th>Volume</th>
<th>Curies</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.1 Mgal (92%)</td>
<td>158 MCI (51%)</td>
</tr>
<tr>
<td>18.3 Mgal (51%)</td>
<td>146 MCI (48%)</td>
</tr>
<tr>
<td>15.8 Mgal (41%)</td>
<td>12 MCI (3%)</td>
</tr>
<tr>
<td>2.8 Mgal (8%)</td>
<td>151 MCI (49%)</td>
</tr>
</tbody>
</table>

36.9 million gallons (Mgal) 309 million curies (MCi)

SRS Liquid Waste Composite Inventory
(Composite of Volumes and Characteristics of all 51 Tanks)
Solid Waste

Work Scope Description

The EM Cleanup Program is categorized by functional areas called Program Baseline Summaries (PBS) which describe the scope, schedule and cost of cleanup work to be performed.

PBS 13, Solid Waste Stabilization and Disposition

This PBS includes the storage, treatment and disposal of legacy transuranic (TRU), low-level, mixed low-level, hazardous and sanitary waste, and landlord functions to support the general operations of the Site. This PBS also covers the safe surveillance and maintenance of its program operational facilities through facility deactivation until the facilities are transferred to PBS 30 for decommissioning.

Glossary of Terms

Low Level Waste

LLW

A catch-all term for any radioactive waste that is not classified as used (spent) fuel, high level radioactive waste, or transuranic (TRU). Included are items such as discarded clothing, equipment, tools and rags lightly contaminated by radioactive elements.

Mixed Low Level Waste

MLLW

Same as LLW, but also has chemical contamination at a high enough level to be considered hazardous according to Environmental Protection Agency (EPA)

Solid Waste disposal

Disposed waste means that the waste has been sent to Waste Isolation Pilot Plant (WIPP), buried as LLW or sent off-site for treatment and disposal as MLLW. Construction rubble is disposed at SRS in construction and demolition landfills and waste classified as ordinary garbage or refuse is buried at the Three Rivers Landfill.
Solid Waste (continued)

Transuranic Waste

TRU

Waste contaminated with transuranic radio-isotopes with an atomic weight greater than 92, with a half-life of over 20 years and in concentrations of more than 1 ten-millionth of a curie of per gram of waste. Included in TRU waste are items such as discarded clothing, equipment, tools and rags lightly contaminated by radioactive elements “beyond uranium,” such as plutonium and neptunium. Although total radioactivity is no higher than LLW, the radioactivity decays slowly over thousands of years.

- SRS TRU Legacy: Waste in storage prior to April 1, 2009
- SRS TRU Newly Generated: Waste generated after April 1, 2009

Waste Isolation Pilot Plant

WIPP

A government-owned deep geologic repository intended to provide permanent disposal for TRU wastes, and located 2,150 feet underground in a salt bed near Carlsbad, New Mexico.
Nuclear Materials

Work Scope Description

The EM Cleanup Program is categorized by functional areas called Program Baseline Summaries (PBS) which describe the scope, schedule and cost of cleanup work to be performed.

PBS 11C, Nuclear Materials Stabilization and Disposition

This PBS includes the management and disposition of nuclear materials, primarily located in H and K Areas at SRS. The H Area facilities continue to stabilize and disposition legacy nuclear materials through operation of the H Canyon and HB Line with Analytical Laboratories and Savannah River National Laboratory (SRNL) support. Continued programmatic and physical support activities related to safe receipt, inventory and management of special nuclear materials (SNM) at DOE-SR in K Area. This PBS also covers the safe surveillance and maintenance of its program operational facilities through facility deactivation until the facilities are transferred to PBS 30 for decommissioning.

PBS 12, Used (Spent) Nuclear Fuels Stabilization and Disposition

This PBS covers the scope and funding for receipt and storage of used nuclear fuel originating from Atomic Energy Commission and DOE-EM activities, used nuclear fuel received at the SRS supporting the Domestic Research Reactor (DRR), Foreign Research Reactor (FRR), and Gap receipt programs. PBS 12 also covers disposition of heavy water stored in C Area, K Area and L Area. This PBS also covers the safe surveillance and maintenance of its program operational facilities through facility deactivation until the facilities are transferred to PBS 30 for decommissioning.
Nuclear Materials (continued)

Glossary of Terms

Canyon
A vernacular term for a chemical separations plant, inspired by the plant's long, high, narrow structure (e.g., H Canyon at SRS). Not all chemical separations facilities are considered “canyons.”

Chemical separation
A process for extracting uranium, plutonium, and other radionuclides from dissolved used (spent) nuclear fuel, irradiated targets and other nuclear materials. Chemical separation is also referred to as processing and/or reprocessing.

Cladding
The outer layer of metal over the fissile material of a nuclear fuel element. Cladding on DOE's used (spent) nuclear fuel is usually aluminum, with relatively small quantities of used fuel clad with zirconium or stainless steel cladding.

Disposition
Generally, when an item is placed in its permanent location (or moved off-site), then the item has been “dispositioned.” An example of disposition is the transportation of low enriched uranium solutions by the Tennessee Valley Authority away from SRS.

Disposition paths
A series of events that lead to the disposition of an item(s). The complete set of events may not be provided, in part because DOE has not decided to implement some of these disposition paths.

Examples of disposition paths (specifically for plutonium):

1. Vitrification: Plutonium stored in K Area is sent to and dissolved in HB Line, sent to the H Canyon, neutralized and then sent to the DWPF for vitrification. The last step (event) of the path has not been determined which is shipment to and placement in a repository. Disposition will occur when the glass logs are shipped off-site. Because the glass logs are a very stable storage medium, some may consider the material dispositioned when vitrified.
Disposal paths (continued)

2. **Package for WIPP**: Plutonium stored in K Area is sent to and dry blended in HB Line with inert material, packaged in pipe overpack containers, and shipped to E Area for packaging in TRU pack containers. The TRU pack containers are then shipped to the Waste isolation Pilot Plant (WIPP) in New Mexico, resulting in disposition of this material.

3. **MOX**: Plutonium stored in K Area and meeting the MOX plutonium specification is sent to the MOX Fuel Fabrication Facility. For EM purposes, the material is considered dispositioned at this point.

Additional examples of disposal paths (specifically for used nuclear fuel):

1. **Aluminum Clad Fuel**: Dissolve in H Canyon, recover the highly enriched uranium, blend with natural uranium to make low enriched uranium and provide to the Tennessee Valley Authority to make commercial fuel; or

2. **Non-Aluminum Clad Fuel**: Ship offsite to either Idaho National Laboratory or to another federal facility (interim storage site or federal repository). The fuel may or may not be placed in a dry storage cask. (Note H Canyon cannot process non-aluminum clad fuel without extensive modifications.)

Dry cask storage

The storage of used (spent) nuclear fuel without keeping it immersed in water. This storage method has been implemented at a number of commercial nuclear stations, but not yet at SRS.

Fissile material

Fissile materials are a subset of nuclear materials that are capable of undergoing fission. Fission is the splitting of an atom that results in the release of a large amount of energy.

Fission

The splitting or breaking apart of the nucleus of a heavy atom usually caused by the absorption of a neutron. Large amounts of energy and one or more neutrons are released when an atom fissions.
Nuclear Materials (continued)

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Half-life</td>
<td>The amount of time needed for half of the atoms of a radioactive material to disintegrate or decay</td>
</tr>
<tr>
<td>Heavy Water</td>
<td>Water with a heavy isotope of hydrogen called deuterium. Exists in all water in low concentrations, not radioactive. Heavy water was used as the primary coolant in SRS reactors during the Cold War.</td>
</tr>
<tr>
<td>Highly Enriched Uranium</td>
<td>A uranium mixture containing 20 percent or higher of uranium-235. When uranium-235 makes up 20 percent or more of all the weight of the uranium (all uranium isotopes added together), then it is highly enriched.</td>
</tr>
<tr>
<td>Low Enriched Uranium</td>
<td>Uranium having an assay greater than 0.711 but less than 20 percent by weight in the fissile isotope 235. Note: Fuel typically used in commercial reactors has an enrichment between 3 and 5 percent.</td>
</tr>
<tr>
<td>Mixed oxide</td>
<td>Mixed-oxide fuel fabricated from a mixture of plutonium and uranium oxides</td>
</tr>
<tr>
<td>Nuclear materials</td>
<td>A collective term for accountable materials designated in DOE Order 410.2, Management of Nuclear Materials. These materials are americium, californium, curium, deuterium, enriched lithium, neptunium, thorium, plutonium and uranium.</td>
</tr>
<tr>
<td>Nonproliferation</td>
<td>Efforts to prevent or slow the spread of nuclear weapons and the materials and technologies used to produce them</td>
</tr>
</tbody>
</table>
| **Plutonium** | An artificially produced radioactive element having 94 protons. Plutonium is generally created by the bombardment of uranium with neutrons. Different isotopes are used in weapons and space missions, and can be used for electric power generation. Examples include:
 Plutonium-239: Radioactive isotope of plutonium used in weapons, usually as a metal (but can be in other forms like oxide). |
Nuclear Materials (continued)

Plutonium (continued)

Plutonium-238: Radioactive isotope of plutonium used in nuclear batteries, primarily in deep space missions such as Cassini, Galileo and Voyager. Exists as an oxide.

Spent Nuclear Fuel

SNF

Stabilization

The conversion of a material to a more stable or safer condition. An example of Stabilization is the dissolution of SNF that is at-risk which after dissolution is sent to DWPF for vitrification in glass. Another example of stabilization is the placement of material into a robust storage container (like a DOE Standard 3013 container).

Storage

The preserving of an item in a protected environment for future stabilization, disposition or use

Tritium

A radioactive isotope of hydrogen used in nuclear weapons, exit signs and watch dials. Tritium gas is used to boost the explosive power of most modern nuclear weapons. Tritium has a half-life of approximately 12 years.

Uranium

The basic material for nuclear technology. This element is naturally slightly radioactive and can be refined from its ore to a heavy metal more dense than lead. Uranium is a radioactive element having 92 protons. Uranium has 14 known isotopes, the most abundant being uranium-238 (92 protons, 146 neutrons, 92 electrons).

Used Nuclear Fuel

UNF

Also called

Spent Nuclear Fuel (SNF)

Fuel withdrawn from a nuclear reactor following irradiation, the constituent elements of which having not been separated by reprocessing.
Soil and Water Remediation and Facility D&D

Work Scope Description

The EM Cleanup Program is categorized by functional areas called Program Baseline Summaries (PBS) which describe the scope, schedule and cost of cleanup work to be performed.

PBS 30, Soil and Water Remediation and Facility D&D

This PBS includes the investigation and, if necessary, remediation of contaminated waste sites, surface water and groundwater. An area completion approach is being used for greater efficiency in lieu of individual waste site investigation/remediation and general facility deactivation and decommissioning (D&D).

This PBS also combines the scope previously captured under PBS 40 for EM facilities Deactivation and Decommissioning (D&D) at DOE-SR in coordination with the Area Completion strategy.

Glossary of Terms

Area Completion

An approach to clean up multiple waste units (contaminated soils) and facilities in a geographic area, conducted as one integrated action. Typically, Area Completion employs both Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) removal and remedial-type actions, to perform waste unit remediation and Resource Conservation and Recovery Act (RCRA) corrective measures in combination with D& activities. Area Completion at SRS provides for cleanup of such operable units so as to promote future reuse. Some of these areas are located near the Site boundary, while others are located within the interior of SRS. The boundaries of each of the areas were determined by evaluating the groundwater and surface water flow paths. Area boundaries were developed, for the most part, by using watershed boundaries, major roads, streams, and buffers around certain features such as facilities, waste units or ponds.
The process of placing a shutdown facility into a safe and stable condition by the elimination or reduction of residual hazards. Deactivation protects the health and safety of workers, the public, and the environment, and minimizes the long-term cost of surveillance and maintenance.

Typically the final stage for a facility. This is when the residual hazards are eliminated permanently. A range of possible alternative end states is evaluated, and the best one chosen. The available alternatives at SRS are in-situ disposal or demolition:

In-Situ Disposal: A term describing a facility end state after decommissioning in which some residual contamination remains, but has been permanently sealed in place. For example, P and R Reactors.

Demolition: Demolishing and removal of the entire facility, to grade, including necessary decontamination to meet established release criteria. For example, the Heavy Water Components Test Reactor.

Footprint reduction focuses on the mitigation of sources of surface contamination, e.g., contamination associated with soils/sediments, concrete and sub-soils associated with building footprints. Footprint reduction is accomplished at SRS (i.e., an area-by-area closure/completion of area operable units) in accordance with the FFA. Through American Recovery & Reinvestment Act (ARRA) funding, accelerated area completions have been accomplished in P, R, and M Areas, along with the in-situ decommissioning of P and R Reactors. Completion of the ARRA scope will effectively reduce the Site’s EM industrial footprint by 85 percent, or 263 square miles.

Groundwater contamination at SRS is approximately 5,000 acres. Cleanup activities are ongoing at SRS, and are typically addressed separate from Area Completion projects due in part to the longer time periods required to perform cleanup.
Soil and Water Remediation, and Facility D&D (continued)

Waste site
An area where a hazardous substance has been deposited, stored, disposed of, or placed, or otherwise come to be located. 515 waste sites have been identified at SRS.

Waste site remediation
An action taken to prevent or minimize the release of hazardous substances so that they do not migrate to cause substantial danger to present or future public health or welfare or the environment. Remediation is necessary if investigation of the waste site shows that the contaminants pose an unacceptable risk to human health and/or the environment.
Site Support Functions

Work Scope Description

The EM Cleanup Program is categorized by functional areas called Program Baseline Summaries (PBS) which describe the scope, schedule and cost of cleanup work to be performed.

PBS 20, Safeguards and Security

This PBS provides the protection of DOE-SR nuclear materials, production facilities and classified matter from theft, sabotage or unauthorized control. The program provides for uniformed protective force personnel, law enforcement and general site security, aviation operations and special response teams, as well as special nuclear materials control and accountability.

PBS 100, Non-Closure Mission Support

This PBS provides support to enable DOE-SR to perform its missions and cleanup activities. Examples of support activities include Natural Resources Management, Cultural Resources, Natural Resource Conservation, Water Observation Activities, and Medical Research.

This PBS combines the scope previously captured under PBS 101 for DOE-SR to perform its missions and cleanup activities. DOE provides funding to support: community outreach, environmental compliance and regulatory integration, geological surveys, archaeological research, forest management, training and educational grants, State of Georgia for emergency management activities, State of South Carolina for independent environmental monitoring and emergency management, SCDHEC for oversight and implementation of the FFA and validation of cleanup credits under the Site Treatment Plan (STP). Payment-in-Lieu-of-Taxes (PILTS) for Aiken, Allendale and Barnwell counties and the operation and maintenance of a public reading room for DOE-SR documents to sustain stakeholder involvement and support for the SRS Citizens Advisory Board is also provided.
Site Support Functions (continued)

Glossary of Terms *(not specific to any particular area of cleanup)*

Hazardous waste
Any chemically toxic, corrosive, reactive or ignitable material that could damage the environment or negatively affect human health

Hazardous waste characteristics
A waste that has not been specifically listed by the EPA may still be considered a hazardous waste if it exhibits one of four characteristics defined in EPA regulations:

- **Ignitable**: Ignitable wastes can create fires under certain conditions, are spontaneously combustible, or have a flash point less than 60 °C (140 °F). Examples include waste oils and used solvents.

- **Corrosive**: Corrosive wastes are acids or bases (pH less than or equal to 2, or greater than or equal to 12.5) that are capable of corroding metal containers, such as storage tanks, drums, and barrels.

- **Reactive**: Reactive wastes are unstable under “normal” conditions. They can cause explosions, toxic fumes, gases, or vapors when heated, compressed, or mixed with water. Examples include lithium-sulfur batteries and explosives.

- **Toxic**: Toxic wastes are harmful or fatal when ingested or absorbed (e.g., containing mercury, lead, etc.). When toxic wastes are land disposed, contaminated liquid may leach from the waste and pollute ground water. Toxicity is determined through a laboratory procedure called the *Toxicity Characteristic Leaching Procedure (TCLP)*. The TCLP helps identify wastes likely to leach concentrations of contaminants that may be harmful to human health or the environment.

Legacy waste
Wastes that are a legacy of the Cold War, which have been placed in storage until technologies and facilities are developed to safely and effectively dispose of them.
An Act that established a broad national framework for protection of the human environment. NEPA's basic policy is to assure that all branches of government give proper consideration to the environment prior to undertaking any major federal action that could significantly affect the environment. NEPA set up procedural requirements for all federal government agencies to prepare Environmental Assessments (EAs) and Environmental Impact Statements (EISs). EAs and EISs contain statements of the environmental effects of proposed federal agency actions. NEPA's procedural requirements apply to all federal agencies in the executive branch. At Savannah River, DOE has prepared EISs on construction and operation of DWPF, management of spent nuclear fuel, closure of waste tanks, and other projects. DOE has prepared EAs on military training at SRS, construction of the biomass cogeneration facility, and other projects.

Radiation

A form of energy produced from the radioactive decay of atoms. It may be emitted as particles, such as alpha, beta, neutrons or pure energy such as gamma rays or x-rays.

- **Alpha particles**: Alpha particles are the heavies and have very little penetrating ability. They can travel only a few inches in the air, and can’t get through a sheet of paper or the outer layer of a person's skin. Alpha particles are only hazardous if inhaled, swallowed absorbed or injected.

- **Beta particles**: Beta particles are more penetrating than alpha particles and can travel a few feet in the air. Beta particles can pass through a sheet of paper or thin clothing but are stopped by a thin sheet of aluminum foil or glass. Beta particles can penetrate into and damage skin but pose the greatest risk if swallowed, inhaled, absorbed or injected.

- **Neutrons** – Particles emitted from the splitting or fissioning of certain atoms like plutonium. Neutrons are very penetrating and are an external hazard. They are usually shielded using concrete, water or thick sheets of plastic.
Site Support Functions (continued)

Radiation (continued)

- **Gamma rays** – Gamma rays are pure energy, typically emitted simultaneously with beta particles and occasionally with alpha particles or neutrons. Gamma rays are extremely penetrating and are also an external hazard. Thick layers of concrete, lead steel or water can be used to stop penetration of gamma rays.

- **X-rays** – X-rays are essentially identical to gamma rays, but generally have less energy. Therefore, x-rays are less penetrating than gamma rays and require less shielding.

Sanitary waste

Waste classified as ordinary garbage or refuse