Optimizing Performance of the Defense Waste Processing Facility

Jean M. Ridley, P.E.

Liquid Waste System Integration Waste Disposition Projects Savannah River Operations Office

1

Purpose

Discuss the process improvements to the Defense Waste Processing Facility (DWPF) resulting in improved efficiencies and production.

DWPF Vitrification History

Objective:

Process (vitrify) high level waste from tank farms into a stable waste form ready for disposal in the Federal Repository

- Design started in 1977
- Construction began 1983
- Radioactive operations began March 1996
- Poured 2471 Canisters as of 3/06/08 9.5 million lbs of glass
- Currently processing Sludge Batch 4
- Two melters to-date
 - 1st 1333 cans replaced in 2004
 - $2^{nd} 1138$ cans to date
 - 3rd ready
 - 4th under construction

Sludge Stored in a Waste Tank

DWPF Process Overview

Vitrification Process

- Sludge mixed with glass formers (frit)
- Sludge/frit slurry fed to melter
- Slurry resides in melter at 1150°C for about 65 hours to permit thorough melting and mixing
- Melter heats melt pool by passing an electric current through it, i.e., "Joule" heating
- Molten glass is drawn from the melter through the melter pour spout to fill a canister
- Pour spout directs the molten pour stream into a canister while a connecting bellows provides a leak-tight seal
- Empty canisters are placed on a pour turn-table and rotated beneath the melter pour spout for filling

Processing Improvements

- Increased HLW Loading of Glass and Optimization of Throughput – 6% increase
- •Glass Pump
- •Heated Bellows Liner 5% increase in attainment
- Melter Siphon Detector 2% increase in attainment
- Melter Feed Pump Software Logic Changes 2% increase in attainment
- •Steam Atomized Scrubber (SAS) Operation vs. Recycle Water 3% increase
- Optimized Frit

7

Waste Loading- Melt Rate-Throughput

Heated Bellows Liner

- Reduced downtime for cleanouts
- Increased attainment 5%

SRS

Other Process Improvements

- Melter Siphon Detector 2% increase
- Melter Feed Pump Software Logic Changes 2% increase
- Steam Atomized Scrubber (SAS) Operation vs. Recycle Water – 3% increase
- Frit Adjustments ensures melt rate/throughput is optimized with constituents of sludge

Potential Improvements

- Gas Chromatographs (GC) installation 3/08
 less downtime due to GC problems
- Sludge Adjustment and Receipt Tank (SRAT) Optimization
- Technology Improvements
- Continued Monitoring of Existing Parameters

Challenges

- Equipment Maintenance
- Spare Parts
 - Pumps
 - Precipitate Reactor Feed Tank (PRFT) Transfer Pump
 - Strip Effluent Feed Tank (SEFT) Transfer Pump
 - 512-S Transfer Pump
 - Agitators
 - Sludge Receipt and Adjustment Tank (SRAT),
 - Slurry Mix Evaporator (SME)
 - Coils SME Coil
 - Tanks
 - SME Tank
 - Melter Feed Tank (MFT)
 - SRAT

