A/M Area Groundwater Cleanup Status Update

A Presentation to the Citizens Advisory Board

Chris Bergren

Project Manager Savannah River Nuclear Solutions Upper Three Runs and Reactors

January 26, 2009

Acronyms

DOE **Department of Energy** DUS **Dynamic Underground Stripping Electrical Resistance Tomography** ERT **Resource Conservation and Recovery Act RCRA** Permit **SCDHEC** South Carolina Department of Health & **Environmental Control** SVE Soil Vapor Extraction VOCs Volatile Organic Compounds Vadose Oil Substrate VOS

- A/M Area Remediation History
- Cleanup Progress
- A/M Groundwater Remediation Framework
- Technology Application examples
- New Technologies
- Path Forward

• Provide an update on the A/M-Area Groundwater remediation to the Citizens Advisory Board

ACP-FY09-019-4

Remediation History of A/M Area

- 3.5 million pounds of solvents released to multiple sources that seeped into soils and groundwater (1950s to 1980s)
 - Large contaminated groundwater plume approximately 1500 acres
 - Contained to SRS; no offsite contamination
- Cleanup is conducted under South Carolina Department of Health & Environmental Control (SCDHEC) Resource Conservation and Recovery Act Permit (RCRA) - issued in 1987
- Multiple treatment technologies in use, include:
 - Airstripping
 - Soil vapor extraction
 - Recirculation wells
 - Dynamic Underground Stripping
 - Baroballs
 - Microblowers

Remediation History of A/M Area

- Groundwater remediation efforts refocused over time:
 - Early: Plume control
 - Today: Source removal
- Over 4.8 billion gallons of groundwater treated; 1.4 million pounds of solvents removed from the subsurface since 1983

M Area Historical Timeline

safety + performance + cleanup + closure

A / M Groundwater Remediation Framework

- Protect groundwater from further degradation
- Reduce plume migration minimizing impacts to:
 - Surface water
 - Deeper groundwater
 - Ecological community
- Focus on source remediation, including vadose zone
 - Significant reductions in time to reach cleanup goals
- Optimize groundwater projects to improve remediation effectiveness

A / M Groundwater Remediation Framework

- Develop and implement alternative remediation technologies
 - Transition from active remediation systems to passive processes as contaminant concentrations decrease
- Monitor effectiveness of remediation systems to determine if necessary changes or enhancements are needed or possible
- Optimize groundwater monitoring to reduce longterm costs
- Conduct all groundwater activities with regulatory involvement and approvals

Remediation Strategy

Treating a Contaminated Site

Enhanced Attenuation alternatives can apply to all zones to supplement Monitored Natural Attenuation (MNA):

Capping, Oil Partitioning

Permeable Biotreatment Wall

Constructed Wetland

Highlighted technologies above represent those being utilized at A/M Area

Technology Application - Examples

- Source Remediation
 - Dynamic Underground Stripping
- Passive Systems
 - Baroballs
 - Microblowers

Dynamic Underground Stripping at the M Area Settling Basin

- Utilizes steam to heat / vaporize solvent contaminants
- 12,000,000 cubic feet targeted over three acres, to depths of 160 feet
- Over 425,000 pounds of solvents removed to date
- Significant reduction in time to reach cleanup goals (75 times faster than pump and treat)

Originally used by the petroleum industry for secondary oil and gas recovery

Dynamic Underground Stripping (continued)

- Steam is injected into subsurface
- VOCs captured by extraction wells and brought to the surface
- Utilize horizontal and angled wells to access contaminants
- Subsurface probes monitor heating progress
- Greatly accelerates groundwater cleanup

Baro Ball

Microblower

EM Environmental Management safety + performance + cleanup + closure

ACP-FY09-019- 18

New Technologies

- Soil Fracturing to enhance Soil Vapor Extraction (SVE)
- Edible Oil Induced Partitioning and Degradation in the Vadose Zone (passive replacement of SVE)

Soil Hydraulic Fracturing

- Deployed in 2008
- High pressure "notching" of formation initiates fracture (vadose zone)
- Inject sand, water, and guar slurry into formation
- Creates horizontal fractures with radius approximately 10 ft.; fractures can be made at any depth
- SVE flow rates increased by an order of magnitude

SRS

Fracturing

Soil notching using a high pressure jet – initiates fractures horizontally

Mixed guar/sand slurry loading into the pumping hopper

Proposed Vadose Oil Substrate (VOS) Field Test (Injection Location)

- VOS (patent pending) is a mixture of edible oil and water with nutrients, buffers and microbes
- Designed to be easily injected in the vadose zone
- VOS sequesters the solvents by diffusion and partitioning and creates an efficient bioreactor for degradation for long-term enhanced attenuation and flux reduction

Path Forward

- Continue to explore application of new technologies
- Aggressively pursue remedial optimization

Active -----> Passive -----> Natural

 Continued monitoring to ensure protectiveness of human health and environment is maintained

