SRS Sitewide Groundwater Remediation Progress

Chris Bergren, Project Manager
Area Completion Projects
Savannah River Nuclear Solutions, LLC

April 12, 2011
Purpose

To status progress of groundwater remediation at the Savannah River Site
Agenda

- Groundwater Contamination Areas at SRS
- Remediation Strategies
- Status
- Technology Examples
 - Chemicals, Metals, Pesticides (CMP) Pits
 - General Separations Area
 - A/M Area
- Conclusion
Savannah River Site
Groundwater Contamination Areas

- A/M Area
- B Area
- C Area
- D Area
- F Area
- E Area
- H Area
- K Area
- L Area
- G Area (CMP Pits)
- N Area
- P Area
- R Area
- T Area

- 14 Groundwater Contamination Areas

South Carolina
Georgia
Remediation Strategy

Low Energy Technologies:
- Phytoremediation
- Passive Soil Vapor Extraction (baroballs)
- Monitored Natural Attenuation

High Energy Technologies:
- Excavation
- Heating (Dynamic Underground Stripping or Electrical Resistance Heating)
- In situ chemical oxidation

Less Aggressive Active Technologies:
- Air stripping
- Recirculation wells
- Hydraulic barrier / Phyto-irrigation
- Base injection

Primary Plume

Active Remediation | Enhanced Natural Remediation | Passive Monitored Natural Attenuation
High cost | Low Cost
Status Overview

• Much progress has been made in groundwater remediation at SRS
 – Contaminants are being addressed in 12 of 14 groundwater contamination areas:
 • Active remediation continues in 1 area
 – A/M Area
 • Enhanced natural remediation in 5 areas
 – F Area – T Area
 – E Area – P Area (Passive at P-Burning Rubble Pit)
 – H Area
 • Passive natural remediation in 6 areas
 – L Area – R Area
 – G Area – C Area
 – B Area – D Area
 – Two groundwater contamination areas remain to be completely characterized
 – N- Area
 – K-Area (Passive at K-Burning Rubble Pit)
Source Zone

Remediation Examples:

- Excavation
- Low permeability covers
- Thermal technologies
- In-situ chemical oxidation
- Soil vapor extraction (SVE)
Primary Plume

Remediation Examples:

• Hydraulic Control
 – Pump and Treat
 – Phytoremediation pond
 – Barrier walls

• In situ
 – Airlift recirculation wells
 – Base injection
 – Chemical oxidation injection
 – Nutrient injection to enhance bioremediation
Passive Natural Systems

Remediation Examples:

- Phytoremediation
- Monitored Natural Attenuation
Chemicals, Metals, & Pesticides Pits

Solvents

During use as a disposal pit

During excavation of drums and contaminated soil
Electrical Resistance Heating Successful at Chemicals, Metals, & Pesticides Pits

- Electrical Resistance Heating removed ~99% of the solvents
- Verified with samples
- Source controlled with Electrical Resistance Heating
- Allowing groundwater to be treated with passive remediation
Chemicals, Metals, & Pesticides (CMP) Pits

Solvents

• Source Control
 – Excavated contaminated soil and drums
 – Used Electrical Resistance Heating (ERH) to remove high concentration solvents
 – Used Soil Vapor Extraction to remove residual solvents

• Primary Plume
 – Currently performing Monitored Natural Attenuation
General Separations Area

Tritium and Metals

• Source Control
 – Capped basins and burial ground

• Primary Plumes
 – Used Pump-and-Treat, not cost-effective; terminated
 – Installed barrier walls for funnel and gate treatment system
 – Using pond with phytoremediation
M-Area

30' Soil Borings at Process Sewer Tie-In

Employees guide the lift liners into roll-off pans for shipment to Clean Harbors Lone Mountain Facility in Oklahoma

M-Area Completion Celebration

A-2 Airstripper

M Area Passive Soil Vapor Extraction Piping of Treatment Cell #1

Baro-ball

Completed Passive Soil Vapor Extraction Well Heads
A/M Area

D US Process Description

Dense Non-Aqueous Phase Liquid (DNAPL)

Dynamic Underground Stripping

Dense Non-Aqueous Phase Liquid (DNAPL)
A/M Areas

Solvents

- **Source Control**
 - Excavated contaminated soil
 - Capped basins
 - Dynamic Underground Stripping removed high concentration solvents
 - Using Chemical Oxidation to remove small pockets of high concentration solvents
 - Using Soil Vapor Extraction to remove residual solvents

- **Primary plume**
 - Using Pump-and-Treat with Airstripping for hydraulic control
 - Using Airlift Recirculation Wells to remove contaminants

- **Depleted sources**
 - Using passive Soil Vapor Extraction (baroballs)
 - Using Solar Powered Soil Vapor Extraction
SRS Groundwater Program
Active to Passive

Early Program

FY11

FY20

FY40

Active
Enhanced
Passive
Conclusion

- Much progress has been made in groundwater remediation at SRS
 - Contaminants have been addressed in 12 of 14 groundwater contamination areas:
 - Active remediation continues in 1 area
 - Enhanced natural remediation in 5 areas
 - Passive natural remediation in 6 areas
 - Two groundwater contamination areas remain to be fully characterized