Salt Waste Processing Facility
SWPF Programmatic Spare Parts and Risk Reduction
April 2011
Bob Leugemors-Parsons
1) Describe how projected life expectations are determined and then utilized in the development of a list of spare equipment and spare parts.

Sources of Information:

- Operational Assessment and Tank Utilization Model (P-ESR-J-00003)
- Industry and Vendor Information
- Operational Experience from similar plants
- Reliability and Maintainability Evaluations at Parsons Technology Center
Spares Optimization Where to Start?
Start at the Beginning with the Production System

Production System

Safety ◆ Quality ◆ Schedule ◆ Cost ◆ Customer Satisfaction
Spare Parts Considerations

- How these parts affect the equipment
- How does the equipment effect the production system
- How does the production system effect overall production capacity of the plant.
When we consider how to stock a part we often start with the part itself, i.e. how expensive is it, how much lead time is involved in reorder, how often we use the part, how hard is it to find. While all these are valid questions they are not what should be the first concerns when formulating a stocking policy.
How Does the Spare Part Fit In

- PLANT PRODUCTION

Production Unit

Production Unit Break Down Cost

Production Unit Criticality Profile

Maintainable Item

Maintainable Item Break Down Cost

Maintainable Item Criticality Profile

SPARE PARTS

Safety ◆ Quality ◆ Schedule ◆ Cost ◆ Customer Satisfaction
Spare Part Questions

<table>
<thead>
<tr>
<th>Item</th>
<th>Details</th>
<th>Questions</th>
<th>Associated Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. WHAT IS YOUR ESTIMATE FOR THE COST OF THE ITEM?</td>
<td>2. $1,000 - $10,000</td>
<td>2. Fewer than 20 - e.g. general demand/category/spare</td>
<td>1. Serves a number of machines or plant areas.</td>
</tr>
<tr>
<td>2. WHAT WOULD BE AN APPROPRIATE STOCK LEVEL?</td>
<td>3. Non-uniform usage or less than 4 stock issues per year</td>
<td>2. No - Failure is random at anytime.</td>
<td>1. Item is at risk but is protected.</td>
</tr>
<tr>
<td>3. WHAT IS THE ESTIMATED USAGE RATE FOR THIS ITEM?</td>
<td>4. CAN THE ITEM BE DAMAGED ACCIDENTLY WHILE IN SERVICE?</td>
<td>1. Failures are common with this type of item.</td>
<td>1. Failures are common with this type of item.</td>
</tr>
<tr>
<td>4. HOW CAN THE SPARE BE USED?</td>
<td>5. IS THE ITEM LIKELY TO FAIL IN SERVICE?</td>
<td>2. Very difficult or impossible - no visible or detectable symptoms</td>
<td>1. Very difficult or impossible - no visible or detectable symptoms</td>
</tr>
<tr>
<td>5. DOES THE ITEM HAVE AN IN-SERVICE DESIGN LIFE?</td>
<td>6. IS FAILURE PREDICTABLE?</td>
<td>2. Sudden and unpredictable (spare required for immediate fitting)</td>
<td>1. Sudden and unpredictable (spare required for immediate fitting)</td>
</tr>
<tr>
<td>7. IS THE ITEM LIKELY TO FAIL IN SERVICE?</td>
<td>8. CAN THE IN-SERVICE UNIT BE CHECKED REGULARLY?</td>
<td>2. At the end of the current batch/shift or next planned shutdown.</td>
<td>2. At the end of the current batch/shift or next planned shutdown.</td>
</tr>
<tr>
<td>8. IS FAILURE PREDICTABLE?</td>
<td>9. IN WHAT TIME-SLAP DOES THE REPAIR HAVE TO BE COMPLETED?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. WHAT IS THE AVAILABILITY OF THE SPARE IF NOT IN STOCK?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical “Human” Decision Process:

- Limited # Of Variables Considered
- Inconsistent (Often Emotional) Process
- Decisions Based On “Gut” Feel Or Experience
- Seldom Documented
Using an Expert System

Computerized Decision Support Process Yields Decisions That Are:

• More Valid
• Easier To Make
• Faster
• Documented
• Repeatable
Benefits of this type of Analysis.

- Scientifically calculated Max / Mins
- Auditable, repeatable, consistent
- Objective Assessment / unemotional
- Business-based decisions
- Better, optimized spares mix
- Shortening of costly delayed re-starts.
- Eliminate Unnecessary Carrying Cost
- Better use of working capital
Examples of the Benefit of Spares Optimization

MAJOR POWER GENERATION FIRM (TVA)

- Reduced $170 Million over a 5 year plan (achieved in 4 years) for its 29 plants, while increasing system availability uptime

GLOBAL MINING FIRM

- By utilizing SOS we reduced $60 million in planned purchases AND added in some (around $1 million) that were missing /should have been in inventory.
- Mobile equipment availability increased 4% which translated into tens of millions of dollar improvements
2) Describe how the spare equipment and/or spare parts program is or is not consistent with shorter life history scenarios.

3) Identify areas of significant risk reduction and explain how these risk reductions relate to the spare equipment and spare parts budget.
Risk Reductions

- Comprehensive Reliability and Maintainability Testing at Parsons Technology Center
 - Extended Sleeve Valves
 - Manipulator Testing
 - Contactor Performance Testing
- Maintenance Trial Test Plan
 - Numerous maintenance trials planned during testing phase e.g.
 - Cross Flow Filter Removal/Replacement
 - Contactor Removal/Replacement
 - Strip Effluent Coalescer
Risk Reductions Continued

- Extensive continuous condition monitoring on equipment not routinely accessible during normal operation e.g.
 - Vibration monitoring on contactors and all rotating equipment in pump and valve labyrinths
 - Trending equipment performance using data historian within DCS
 - Troubleshooting and Diagnosing Valve and Instrument activities using AMS Intelligent Device Manager (a function of the Delta V DCS software)