

OPERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

Alternative Dispositions of Used Nuclear Fuel

Ed Sadowski, Ph.D. Chief of Strategic Science & Technology for Nuclear Materials

Citizens Advisory Board Nuclear Materials Committee April 15, 2014

To satisfy Nuclear Materials Committee Work Plan item by:

Presenting several alternatives for disposition of Used Nuclear Fuels (UNF)

• Current interim storage and disposition path

- L-Basin interim storage
- H-Canyon aqueous separation
- High Level Waste (HLW) system

Possible alternatives

- Dry Storage
- Melt-Dilute
- Electrochemical Separation
- Electrodialysis Separation
- Selective Electrochemical Extraction
- Chromatographic Separation
- Summary

Current interim storage and disposition path

L-Basin Interim Storage

- Uranium (U) clad with aluminum (Al)
- Purified water with a highly controlled chemistry
- SRS Basins Management and Surveillance Program used as a model by the United Nations' International Atomic Energy Agency (IAEA) for development of International Standards Organization (ISO) standards for basins around the world
- This is not disposition; it is interim storage

Current Disposition Path for Typical UNF

- Transport by Savannah River Site (SRS) rail in heavily shielded casks to H-Canyon
- Dissolve in nitric acid in stainless steel tanks
- Separate U from AI, fission products (FPs), and minor actinides (MAs)
- Uranium is down-blended to Low Enriched uranium and provided to TVA for future use
- AI, FPs, and MAs dispositioned through the HLW system

Savannah River National Laboratory

Possible alternatives

All will require years of research, development, demonstration, and scale up which requires funding that is not currently available

Savannah River National Laboratory ~ PERATED BY SAVANNAH RIVER NUCLEAR SOLUTIONS

SRNL-MS-2014-00040

7

Dry Storage

- Build heavy duty storage pads
- Transport UNF out of L-Basin
- Dry via mechanical means
- Place into shielded storage casks
- Place casks on storage pads

- Need research & development (R&D) on storage and monitoring of AI clad UNF in a harsh environment (heat and radiation)
- Not a disposition
- Ready to ship to federal repository

Melt-Dilute

- Melt UNF in a furnace vs. dissolve in nitric acid in a tank
- Add natural U (NU) (almost exclusively U-238) to reduce U-235 percentage to less than 20%

- Nonradioactive demonstration runs conducted ~15 years ago
- Ready to ship to federal repository as UAI metal (w/ fission products and minor actinides encased)
- Need new equipment
- Scale up will require years

- Research & development of all is in the early stages
- Small footprint, continuous throughput, low waste, and low inventory alternatives to the current baseline aqueous process in H-Canyon but would require a longer period of time to complete
- NU is added to the UNF to reduce the U-235 percentage (enrichment) to less than 20% to reduce significantly the Safeguards & Security on the U. This is what is called down-blending –changing HEU into LEU.
- End state examples
 - AI to Low Level Waste (LLW)
 - U to LLW or to the Tennessee Valley Authority (TVA)
 - Fission Products (FPs) and Minor Actinides (MAs) to the High Level Waste (HLW) system

Electrochemical Separation

- Melt UNF in an electrolytic salt in a crucible vs. dissolve in nitric acid in a tank
- Charge electrodes to capture elements of interest on electrodes or remain in electrolyte
- Potential significant reduction in liquid waste due to recycle of electrolyte
- Proof of Concept study through Lab Directed Research & Development (LDRD) project demonstrated laboratory bench scale feasibility
 - Several phases of scale up will require years

- Dissolve UNF in nitric acid in a tank as done now
- Flow solution between membranes
- Capture elements of interest on charged membranes
- Rinse or package membranes depending upon desired end states
- Lab Directed Research & Development (LDRD) Proof of Concept project began last month

- Dissolve UNF in nitric acid in a tank or melt in an electrolyte in a crucible
- Choose voltages to capture elements of interest
- Rinse or package electrodes depending upon desired end states
- Lab Directed Research & Development (LDRD) Proof of Concept project began last month

Chromatographic Separation

- Dissolve UNF in nitric acid in a tank
- Flow solution through resin column •
- AI, U, FPs, MAs have differing transit times through resin based upon affinity for the resin material
- Route elements for additional processing ۲ depending upon desired end states
- Lab Directed Research & Development (LDRD) ٠ Calculational Modeling project began last month

Summary

- The UNF at SRS is stored safely & securely
- The UNF and the L-Basin water are monitored routinely
- The UNF disposition through H-Canyon and the High Level Waste system is the most viable option given today's technology
- Savannah River National Laboratory is pursuing tomorrow's technology by beginning years of research and development

