

Savannah River Site L-Basin Spent Nuclear Fuel Program Update

Maxcine Maxted

Spent Nuclear Fuel Program Manager

Savannah River Site Savannah River Site Citizens Advisory Board January 27, 2015

OFFICE OF ENVIRONMENTAL MANAGEMENT

Overview of L-Basin

- L-Basin was expanded from the original reactor basin in the 1990s
 - ~3.4 Million gallons of water
 - Pool Depth 17 to 50 feet
 - Receives typical Foreign Research Reactor/Domestic Research Reactor (FRR/DRR) Material Test Reactor Fuel Assemblies
 - One transfer bay for receipts/shipments

L-Basin Water Purification System

- ~3.4 Million Gallons
- Pool depths of 17 to 50 feet
- · Concrete walls 2.5 to 7 feet thick
- A Deionizer Resin Train is used to remove and replace unwanted ions

SAND FILTER

All water passes

every 32 hours

through sand filters

OFFICE OF

ENVIRONMENTAL

NAGEMENT

All water passes through the ion exchange every 13 days

EXCHANGE

NO

DEIONIZED WATER MAKEUP

MARLOP

Water Chemistry Control

Normal Value	Operating Limit
<1.5 mS/cm	10 mS/cm
6.1	5.5 to 8.5
<0.05 ppm	0.1 ppm
<0.014 ppm	0 014 ppm
<0.05 ppm	<0.1 ppm
	<1.5 mS/cm 6.1 <0.05 ppm <0.014 ppm

www.energy.gov/EM

Inventory at Savannah River Site

- Approximately 3,050 bundles of fuel
 - Aluminum Based & Stainless
 Steel/Zirconium Based Spent Nuclear
 Fuel (SNF) (~90%)
 - Highly Enriched & Low Enriched Spent Nuclear Fuel (75% vs 25%)
 - Various shapes, sizes, burn-up percentage, degradation
- Safely and Securely Stored in Reinforced Concrete Facility, Underwater Basin (L-Area)
- Continuous Surveillance and Maintenance 50 additional years of safe storage

Used Nuclear Fuel Storage

L-Basin Stored Fuels and Capacities

- L-Bundled fuel
 - Typical Foreign Research Reactor/ Domestic Research Reactor (FRR/DRR) Material Test Reactor Fuel Assemblies
 - ~90% full
 - 3045 bundles
 - Amended Record of Decision (AROD) processing decision eliminates need for new racks
- High Flux Isotope Reactor (HFIR) Fuel Racks
 - 100% full
 - 120 Cores
 - Amended Record of Decision (AROD) processing decision eliminates need for new racks
- Isolation Cans
 - Over 400 individual isolation cans stored in 12 oversized cans

Forecast EBS Bundle Positions Filled by FRR/DRR Receipts with H-Canyon Processing

HFIR – High Flux Isotope Reactor HEU – High Enriched Uranium

National Research Universal/ National Research Experimental (NRU/NRX) Basin Modifications

- Canadian Nuclear Laboratories has National Research Universal/National Research Experimental (NRU/NRX) fuel that is longer and heavier than typical Material Test Reactor Fuel
 - Contract signed in 2012 where prepayment of \$10 Million made for the modifications to be made for receipt of the fuel in L-basin
- Modifications to the Shielded Transfer System (STS) are required to remove the fuel from the legal weight truck (LWT) cask.
- New unloading station developed to remove the fuel from the basket and load it into bundles for storage in L-basin.
- Fabrication of the Shielded Transfer System (STS) modifications are expected by end of Calendar Year 2014 but now projected by end of February 2015.
- Multi-year shipping campaign
- No other modifications are expected for typical Material Test Reactor Fuels.
- All non-typical Material Test Reactor fuels will be evaluated on a case-by-case basis.

8

- Continue Safe Wet Storage
- Process up to 1000 bundles and 200 High Flux Isotope Cores
- Continue Operations of L-Basin evaluated by Savannah River National Laboratory for safe usage of L-Basin up to an additional 50 years

- Successfully completed the Sodium Reactor Experiment Fuel Campaign in August 2014
 - 147 bundles of Sodium Reactor Experiment and High Aluminum Fuels
 - No recovery of Uranium due to U-232
- Amended Record of Decision allows :
 - Processing up to 1000 bundles and 200 High Flux Isotope Cores
 - 40 bundles completed through December 31, 2014
- H-Canyon continued processing of the Aluminum Cladded Fuel in L-Basin is possible but no decision has been made to pursue this at this time
- H-Canyon cannot process the Stainless and Zircaloy cladded fuels stored in L-Basin (~ less than 10% of the inventory)

- Savannah River Site lifecycle assumes dry storage
 - No decision on processing
 - It is the more costly option for capturing liability costs
- Dry Storage Study was conducted in 2012
 - Included information from both Hanford and Idaho
 - Direction was to include as much "commercially available" options as possible
 - Direction was also to assume the final configuration of the fuel was "road ready" (ready for shipment to a repository)
- Concerns regarding the drying of Aluminum Fuel need to be addressed:
 - How long to dry, how fast to dry to ensure no generation of hydrogen or hydrides

Dry Storage (continued)

- Storage Pad
 - Dry Storage Report envisioned the pad located in L-area
 - Another report is evaluating the use of a multi-use storage pad
- Multi-use storage Pad
 - Very preliminary study
 - Storage of both Vitrified Glass logs in concrete overpacks as well as dry fuel in concrete overpacks
 - Considers a Central location within the site
 - Major driver for multi-use pad is potentially reduced transportation costs and shared storage costs
 - Difficult to determine any cost savings due to the potential need for fuel drying in a different location from L-Area.

12

- Fuel is Safely Stored in L-Basin
- Some processing of Fuel is occurring in H-Canyon
- Alternatives to wet storage have been evaluated
- Departmental Decision needed on future direction of fuel storage versus processing