RELIABILITY ENHANCEMENTS
AT THE SALTSTONE
PRODUCTION FACILITY

Aaron V. Staub
DWPF Melter and Saltstone
Engineering Manager
Agenda

- Process Overview
- Facility Background
- Enhanced Low Activity Waste Disposition (ELAWD) Project Technical Approach
- Major Process Equipment
- Residual Reliability Challenges and Associated Modifications
- Summary
- Q&A
Facility Background

- **Facility commissioned in 1990**
 - Original design basis capacity for 6Mgal/year of decontaminated salt solution (DSS)
 - Days-only operating schedule due to high instantaneous processing rate

- **Salt Program delayed in mid-1990s**
 - Operation limited to small volume receipts from Effluent Treatment Facility
 - Facility generally destaffed, operated for brief campaigns when sufficient waste inventory had accumulated

- **Interim Salt Disposition (ISD) initiated mid-2000s**
 - Typical throughput of 1-2Mgal/year of DSS
 - Radionuclide content of DSS higher than original design basis, forced redesign of several major process components

- **Operational Experience in 2009-2010 showed unsatisfactory reliability, repeated pluggage occurrences at mixer outlet and grout pump hopper outlet**
 - Enhanced Low Activity Waste Disposition (ELAWD) Project initiated to improve reliability
ELAWD Technical Approach

- **Phase I**
 - Modifications necessary to ensure repeatable and reliable operations from day to day
 - Larger grout pump hopper with larger inventory to better accommodate short-term flow deviations
 - Modified shutdown automation to eliminate timer-based actions in favor of process indications
 - Spare mixer procurement to allow for rapid changeout
 - Field installation in 2012
 - Highly successful, zero system pluggages since completion of Phase I

- **Phase II**
 - Modifications necessary to support higher annual throughput anticipated from the Salt Waste Processing Facility
 - Balance of Plant modifications for extended shift operations
 - Upgraded silo dust collector to allow for simultaneous truck unloading
 - Multiple modifications to eliminate equipment obsolescence
 - Process Air Compressors
 - Premix Screwfeeders
 - Improved aeration flow to silos to increase storage capacities
Major Process Equipment

- Dry Feed Silos
Major Process Equipment

- Saltstone Mixer
Major Process Equipment

- Grout Pump Hopper and Grout Pump
- **Abrasive wear of paddle tips upstream of salt solution inlet**
 - Results in accumulation of solid grout around inner circumference of mixer barrel
 - Causes flow restriction which leads to accumulation of premix in feed chute
 - Design changes implemented for detection/monitoring
 - Requires replacement of worn paddles (Presently every 2.5-3M gal DSS, four week outage)
Resolution involves redesign of mixer internals

- Currently evaluating the replacement of paddles with additional screw feeder sections
- Next step involves a redesign to the affected paddles with a two-piece design
 - Evaluate abrasion resistant materials for tips - Increase service interval to >6Mgal
 - Reduce outage time to 1 week
Residual Reliability Challenge - Grout Pump Hose Failure

- Foreign material an inherent risk with dry feeds
- Magnetic separators used to minimize inclusion into process
- Mixer inspections show separators not 100% effective
Upon loss of hose integrity, process is shut down and critical equipment flushed

Pump heads are piped to an overflow container
- Container volume limited to 450 gal by overhead crane capacity
- Desired flush volume approx. 1800 gal
- Balance of flush volume directed to drain tank adjacent to Salt Solution Receipt Tanks

Recovery requires outage to perform piping inspection/replacement and repair/replacement of grout pump
- Resolution involves installation of a separate recovery pump to evacuate overflow container and return flush material to transfer line and out to SDU
 - Multiple overflow containers not feasible due to space constraints within process room
 - Provides for complete flushing of affected piping, minimizes repair scope
Summary

- Expectations of the Saltstone Facility have varied significantly over the past 30 years
- Operational experience during ISD identified several vulnerabilities that would have limited SWPF production
- ELAWD Phase I ensured the reliable startup and shutdown of the process
- ELAWD Phase II is addressing obsolescence issues and improving dry material unloading and storage to support SWPF throughput
- Facility is actively pursuing modifications to address conditions that are the drivers of extended facility outage time